Abstract Submitted for the MAR06 Meeting of The American Physical Society

First-principles study of high-pressure phase transitions in Si₃N₄¹ BIN XU, JIANJUN DONG, Physics Department, Auburn University, HAROLD STOKES, Brigham Young University, DORIAN HATCH, Brigham Young University — We have performed a systematic theoretical study of phase transitions in Si₃N₄ at high-pressure. We calculated the Gibbs free energies of the ground state β phase and the high-pressure γ phase at various temperatures and pressures based on the first- principles density functional theory and the statistical quasi-harmonic theory. The thermal equations of state and the Clapeyron slope of the β -to- γ transition at high-pressure are determined and compared with available experimental data. In addition to the recently discovered high- pressure γ -phase, we predict a new highpressure phase of hexagonal symmetry. This new high-pressure phase is likely to exist metastably at the high pressure *and room temperature*, and it is associated with a non Å-point soft phonon distortion. The structural and elastic properties and the stability condition of this predicted metastable high-pressure phase will be discussed.

¹This work is supported by DOE (DE-FG02-03ER46060).

Bin Xu Department of Physics, Auburn University

Date submitted: 05 Dec 2005

Electronic form version 1.4