Non-local Magnetic Field-tuned Quantum Criticality in Cubic CeIn$_{3-x}$Sn$_x$ ($x = 0.25$) NEIL HARRISON, ALEJANDRO SILHANEK, MARCELO JAIME, VICTOR FANELLI, CRISTIAN BATISTA, Los Alamos National Laboratory, TAKAO EBIHARA, KOJI TEZUKA, Shizuoka University — We show that antiferromagnetism in lightly Sn-doped CeIn$_3$ terminates at a critical field $\mu_0 H_c = 38 \pm 1$ T. Electrical transport, specific heat and magnetization measurements reveal that m^* does not diverge, suggesting that cubic CeIn$_3$ is representative of a critical spin-density wave (SDW) scenario, unlike the local quantum critical points observed in lower-symmetry systems such as CeCu$_{6-x}$Au$_x$ and YbRh$_2$Si$_{2-x}$Ge$_x$. The existence of a maximum in m^{ast} at a lower field $\mu_0 H_x = 30 \pm 1$ T may be interpreted as a field-induced crossover from local moment to SDW behavior as the magnitude of the antiferromagnetic order parameter falls below the Fermi bandwidth.

Neil Harrison
Los Alamos National Laboratory

Date submitted: 10 Jan 2006

Electronic form version 1.4