Abstract Submitted for the MAR06 Meeting of The American Physical Society

Non-local Magnetic Field-tuned Quantum Criticality in Cubic CeIn_{3-x}Sn_x (x = 0.25) NEIL HARRISON, ALEJANDRO SILHANEK, MARCELO JAIME, VICTOR FANELLI, CRISTIAN BATISTA, Los Alamos National Laboratory, TAKAO EBIHARA, KOJI TEZUKA, Shizuoka University — We show that antiferromagnetism in lightly Sn-doped CeIn₃ terminates at a critical field $\mu_0 H_c = 38 \pm 1$ T. Electrical transport, specific heat and magnetization measurements reveal that m^* does not diverge, suggesting that cubic CeIn₃ is representative of a critical spin-density wave (SDW) scenario, unlike the local quantum critical points observed in lower-symmetry systems such as CeCu_{6-x}Au_x and YbRh₂Si_{2-x}Ge_x. The existence of a maximum in $m^a st$ at a lower field $\mu_0 H_x = 30 \pm 1$ T may be interpreted as a field-induced crossover from local moment to SDW behavior as the magnitude of the antiferromagnetic order parameter falls below the Fermi bandwidth.

> Neil Harrison Los Alamos National Laboratory

Date submitted: 10 Jan 2006

Electronic form version 1.4