Abstract Submitted for the MAR06 Meeting of The American Physical Society

Magnetic Susceptibility and Heat Capacity of Single Crystal CaV_2O_4 Containing $S = 1 J_1 J_2$ Antiferromagnetic Spin Chains¹ A. NIAZI, D. C. JOHNSTON, S. BUD'KO, D. L. SCHLAGEL, T. A. LOGRASSO, Ames Lab., Iowa State U., Ames, IA 50011, USA, A. HONECKER, TU Braunschweig, Inst. Theor. Phys., 38106 Braunschweig, Germany — The compound CaV₂O₄ has an orthorhombic *Pnam* structure and contains spin S = 1 zig-zag (J_1-J_2) chains running along the crystallographic b-axis. Structural considerations suggest that $J_1 \approx J_2$, which would result in competing frustrating antiferromagnetic (AF) interactions in this low-dimensional system. Previous studies on powders have suggested collinear spin models, a gapless chiral phase, or spin freezing below 20 K. We have grown single crystals of CaV_2O_4 for the first time and carried out magnetization and heat capacity measurements down to 1.8 K. We observe long-range AF ordering at $T_{\rm N} = 54$ K with the easy axis being the c-axis, as reflected by anisotropic susceptibility χ below $T_{\rm N}$. The magnetic specific heat $C_{\rm p}^{\rm mag}(T)$ up to 100 K, obtained after subtracting the lattice contribution of nonmagnetic isostructural $CaSc_2O_4$, shows a clear signature of long-range magnetic order at $T_{\rm N}$. However, the molar entropy attains only $\approx 1/4$ of its maximum value 2Rln(3) by 100 K, indicating strong short range order above $T_{\rm N}$ and large values J_1 , $J_2 > 100$ K. This is consistent with our estimates $J_1 \approx J_2 \sim 150-300$ K obtained by comparison of our $\chi(T)$ data with exact diagonalization calculations of $\chi(T)$.

¹Supported by the USDOE under Contract No. W-7405-ENG-82.

A. Niazi

Date submitted: 29 Nov 2005

Electronic form version 1.4