Magnetic Susceptibility and Heat Capacity of Single Crystal CaV$_2$O$_4$ Containing $S = 1$ J_1-J_2 Antiferromagnetic Spin Chains1 A. NIAZI, D. C. JOHNSTON, S. BUD’KO, D. L. SCHLAGEL, T. A. LOGRASSO, Ames Lab., Iowa State U., Ames, IA 50011, USA, A. HONECKER, TU Braunschweig, Inst. Theor. Phys., 38106 Braunschweig, Germany — The compound CaV$_2$O$_4$ has an orthorhombic $Pnam$ structure and contains spin $S = 1$ zig-zag (J_1-J_2) chains running along the crystallographic b-axis. Structural considerations suggest that $J_1 \approx J_2$, which would result in competing frustrating antiferromagnetic (AF) interactions in this low-dimensional system. Previous studies on powders have suggested collinear spin models, a gapless chiral phase, or spin freezing below 20 K. We have grown single crystals of CaV$_2$O$_4$ for the first time and carried out magnetization and heat capacity measurements down to 1.8 K. We observe long-range AF ordering at $T_N = 54$ K with the easy axis being the c-axis, as reflected by anisotropic susceptibility χ below T_N. The magnetic specific heat $C_{\text{mag}}^p(T)$ up to 100 K, obtained after subtracting the lattice contribution of nonmagnetic isostructural CaSc$_2$O$_4$, shows a clear signature of long-range magnetic order at T_N. However, the molar entropy attains only $\approx 1/4$ of its maximum value $2R\ln(3)$ by 100 K, indicating strong short range order above T_N and large values J_1, $J_2 > 100$ K. This is consistent with our estimates $J_1 \approx J_2 \sim 150$–300 K obtained by comparison of our $\chi(T)$ data with exact diagonalization calculations of $\chi(T)$.

1Supported by the USDOE under Contract No. W-7405-ENG-82.

A. Niazi

Date submitted: 29 Nov 2005