Abstract Submitted for the MAR06 Meeting of The American Physical Society

Is quantum criticality relevant to upper critical field (H_{c2}) scaling in the heavy-fermion compound CeRhIn₅?¹ TUSON PARK, JOHN L. SARRAO, JOE D. THOMPSON, Los Alamos National Laboratory — We report disparate forms of upper critical field (H_{c2}) scaling below and above a critical pressure P_{c1} , where long- range antiferromagnetic order (AFM) abruptly disappears in the pressure-tuned heavy-fermion superconductor CeRhIn₅. For $P > P_{c1}$, $h_{c2} = H_{c2}/H_{c2}(T = 0 \text{ K})$ shows normal two- fluid type scaling with $t = T/T_c$, i.e., $h_{c2} = (1 - t^2)(1 - at^2)$, where T_c is superconducting transition temperature at zero field and a is a fitting parameter. In this regime, the Maki parameter α , a measure of Pauli limiting effects, is large, suggesting that an inhomogeneous superconducting state (FFLO) may be observable. For $P < P_{c1}$, in stark contrast, h_{c2} linearly increases with decreasing t down to t = 0.1 and the specific heat discontinuity $\Delta C/C_N$ at T_c is much smaller than the BCS value (=1.43). These observations manifest the interplay between superconductivity and antiferromagnetic fluctuations that exist in the vicinity of P_{c1} .

¹Work at Los Alamos was performed under the auspices of the U.S. Department of Energy.

Tuson Park Los Alamos National Laboratory

Date submitted: 05 Jan 2006

Electronic form version 1.4