Anisotropic Superconducting Phase Diagram of C₆Ca

ULRICH WELP, R. XIE, D. ROSENmann, A. RYDH, H. CLAUS, G. KARAPETROV, W. K. KWOK, Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 — We present a study of the anisotropic superconducting phase diagram of the new carbon intercalation superconductor C₆Ca employing magnetization and specific heat measurements. The intercalation of Ca into flakes of natural graphite takes place through vapor transport at temperatures near 500 °C. The resulting crystals display an onset of superconductivity at 11.3 K and a transition width of about 1 K as seen in heat capacity and low-field magnetization measurements. A clear step in the heat capacity confirms the bulk nature of the superconducting state. Roughly 1/3 to 1/2 of the sample volume is superconducting as evidenced by the reduced step height of the heat capacity. From measurements of the upper critical field, \(H_{c2} \), we determined an in-plane coherence length of \(\xi_{ab} \approx 36 \) nm. The angular dependence of \(H_{c2} \) is well described within the model of effective mass anisotropy yielding an anisotropy parameter of \(\Gamma \approx 3.5 \) to 4.

1This work was supported by the U.S. Department of Energy under grant no. W-31-109-ENG-38
2present address: Stockholm University, Albanova, SE-10691, Sweden