Abstract Submitted
for the MAR06 Meeting of
The American Physical Society

Quantum state control of atoms in microscopic optical traps

MARK SAFFMAN, DENIZ YAVUZ, MARIE DELANEY, University of Wisconsin,
PASAD KULATUNGA, Hobart and William Smith Colleges, TODD JOHNSON,
ERICH URBAN, THOMAS HENAGE, NICHOLAS PROITE, THAD WALKER,
University of Wisconsin — We present recent progress in loading and manipulation of neutral atoms in microscopic optical traps. Single Rb atoms are loaded into far-off resonant optical traps from a background vapor of cold atoms. Tightly focused optical beams are used to perform two-photon stimulated Raman rotations between hyperfine qubit states. We demonstrate qubit rotations at a rate of 1.4 MHz, 1 ms coherence time, and individual site addressing with crosstalk at the level of 10^{-3}. These results are a significant step towards quantum computing using optically trapped neutral atoms. We discuss work in progress aimed at observing strong, angle independent dipole-dipole interactions for fast two-qubit gates using microwave dressing of Rydberg states. We demonstrate two-photon coherent excitation of Rydberg levels by a $5s_{1/2} - 5p_{3/2} - nd_{5/2}$ sequence. The possibility of dipole-dipole interactions without angular zeroes will be important for gates, as well as for coupling to mesoscopic qubits to enable transmission of quantum states.

1This work is funded by the NSF and the Army Research Office.

Mark Saffman
University of Wisconsin

Date submitted: 02 Dec 2005 Electronic form version 1.4