Abstract Submitted for the MAR06 Meeting of The American Physical Society

Critical behavior and spin polarization of a single crystal Mn_5Ge_3 . T.Y. CHEN, J. VALENTINE, C.L. CHIEN, The Johns Hopkins University, C. PETROVIC, Brookhaven National Laboratory — Despite difficulties of injecting spin into semiconductor using ferromagnetic metals, spin injection into semiconductor is essential for spintronics in order to take advantage of the silicon-based electronics. The intermetallic compound Mn_5Ge_3 is a promising candidate as a spin injector for semiconductor because of its relatively high Curie temperature and good lattice match with semiconductors. Recent theoretical calculations show that Mn_5Ge_3 has a spin polarization of as much as 70% in the purely diffusive region. In this work, we have determined the critical exponents of a single crystal Mn_5Ge_3 using magnetometry. The critical temperature has been determined to be $T_C =$ 283.68 ± 0.02 K from spontaneous magnetization with the critical exponents of β $= 0.358 \pm 0.005$ and $\gamma = 1.367 \pm 0.005$. The spin polarization of the crystal determined using point contact Andreev reflection (PCAR) is $54\pm 2\%$, indicating that it is a good spin injector with a substantial spin polarization compared with ordinary ferromagnetic metals such as Fe, Co and Ni. Work supported by NSF grant No. DMR05-20491 and DMR04-03849.

> Tingyong Chen the Johns Hopkins University

Date submitted: 12 Jan 2006

Electronic form version 1.4