Improved thermoelectric characteristics of misfit-layered cobaltites \(\text{Ca}_3\text{Co}_{4-x}\text{Fe}_x\text{O}_{9+\delta} \).\(^1\) CHIA-JYI LIU, LI-CHEN HUANG, WEN-CHING HUNG, Department of Physics, National Changhua University of Education, JENG-LUNG CHEN, CHING-LIN CHANG, Department of Physics, Tamkang University — We have measured the electrical resistivity, Seebeck coefficients and thermal conductivity as a function temperature for a new series of oxides \(\text{Ca}_3\text{Co}_{4-x}\text{Fe}_x\text{O}_9 \) (\(x = 0, 0.05, 0.1, 0.15, 0.2 \)) prepared by the conventional solid state reaction. Structural parameters were refined with a superspace group of \(\text{X}2/\text{m}(0\text{b}0)\text{s}0 \) using powder X-ray diffraction data. With the substitution of \(\text{Fe}^{+2} \) for \(\text{Co}^{+3} \), the resistivity (\(\rho \)) decreases, while the thermoelectric power (\(S \)) also increases simultaneously. In the low temperature regime from 15 K to 60 K, the electrical conductivity follows the Mott’s law of the form \(\exp[\frac{T_0}{T^{-1/4}}] \), suggesting the variable-range-hopping transport. The thermoelectric power also shows the same transport mechanism in the same temperature regime. The \(x = 0.05 \) sample exhibits a higher power factor value (3.3 \(\mu \text{W/K}\text{cm}^2 \)) than that of undoped \(\text{Ca}_3\text{Co}_4\text{O}_9 \) (1.2 \(\mu \text{W/K}\text{cm}^2 \)) at 300K, indicating the improvement of the thermoelectric characteristics upon Fe substitution for Co.

\(^1\)This work was supported by National Science Council of R. O. C. under the Grant No. NSC 94-2112-M018-001.