Chemical alloying induced collapse of reversibility windows in ternary As-S-I glasses* FEI WANG, Department of EE, California Polytechnic State University, P. BOOLCHAND, Department of ECECS, University of Cincinnati — Thermally reversing windows represent glass compositions across which glass transitions are thermally reversing in character. These windows have been observed in several chalcogenide glasses, and are identified with self-organized phases of glassy networks. Upon alloying halogen (iodine) in base chalcogenide glasses (Ge-Se, Ge-S), the reversibility windows collapse about the mean-field rigidity transition. We attempt to understand this behavior better. We have now synthesized ternary glass compositions of the type, \((\text{AsI}_3)_x(\text{As}_{0.30}\text{S}_{0.70})_{1-x}\) and \((\text{AsI}_3)_y(\text{As}_2\text{S}_3)_{1-y}\) over wide composition ranges of \(x\) and \(y\), and have examined them systematically in Raman scattering and MDSC experiments. Along with earlier results on binary \(\text{As}_z\text{S}_{1-z}\) glasses, the present results permit mapping the reversibility window over the glass forming range of the present As-S-I ternary. The results show the window region to be of nearly triangular shape, with a base extending in the 0.20 \(< z < 0.27\) range and a vertex located near \(y = 0.28\). A possible interpretation of the results will be presented. * Supported by NSF grant DMR-04 -56472 1. P.Boolchand et al.Phil. Mag 85,3823 (2005). 2. Y. Wang et al. Phys. Rev. Lett. 87, 18, 5503 (2001) 3. D.G. Georgiev, Ph.D. Thesis , Univ. of Cincinnati (2003) unpublished

Fei Wang
Department of EE, California Polytechnic State University

Date submitted: 29 Nov 2005

Electronic form version 1.4