Enhanced optical magnetolectric effect in a patterned polar ferrimagnet1 N. KIDA, ERATO-JST, Y. KANEKO, ERATO-JST, J.P. HE, ERATO-JST, M. MATSUBARA, CERC-AIST, H. SATO, CERC-AIST, T. ARIMA, ERATO-JST and Tohoku Univ., H. AKOH, CERC-AIST, Y. TOKURA, ERATO-JST, CERC- AIST, and Univ. Tokyo — A simple method to dramatically enhance the optical magnetoelectric (ME) effect, i.e., nonreciprocal directional birefringence, is proposed and demonstrated for a polar ferrimagnet GaFeO\textsubscript{3} as a typical example. We patterned a simple grating with a pitch of 4 \(\mu \)m on a surface of GaFeO\textsubscript{3} crystal and used the diffracted light as a probe. Optical ME modulation signal for Bragg spot of the order \(n = 1 \) becomes gigantic in the photon energy 1–4 eV and reaches 1–2\% of the bare diffracted light intensity in a magnetic field of 500 Oe. This is amplified by more than three orders of magnitude compared to that for the reflection of bulk GaFeO\textsubscript{3}. Fabricating a photonic crystal will make it possible to lead a new route for the practical use of the optical ME effect.

1This work was in part supported by a Grant-In-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Noriaki Kida
ERATO-JST

Date submitted: 15 Dec 2005