Dynamical Mean-Field Equations for Strongly Interacting Fermi Gas in a Trap

Wei Yi, Luming Duan, University of Michigan, FOCUS TEAM

We derive the time evolution equations at zero temperature for the wavefunctions of the molecular bosons and the fermion pairs in a trapped Fermi gas near a wide Feshbach resonance. The derivation of the equations is based on the variational principle and the BCS-like ansatz state:

$$| \Phi \rangle = \mathcal{N} \int \phi(r) \psi_\uparrow(r) \psi_\downarrow(r') \rho(r,r') \psi_\downarrow(r') d^3r d^3r' \langle \rho |,$$

In deriving the equations, we have assumed that the external trapping potential and the wavefunction of the molecular bosons are spatially slow-varying on the length scale of the size of the fermionic atom pairs, which should be valid over a wide range on the BEC side of resonance, including the resonance point. In the bosonic region ($\mu \leq 0$, where μ is the chemical potential), the equations will reduce to one that resembles a Gross-Pitaevskii (GP) equation. We solve the stationary ground state of the system at different detunings near the crossover region and self-consistently checked our assumptions. The time evolution equations provide macroscopic description for the wavefunctions of the molecular bosons and of the fermion pairs near the interesting BCS-BEC crossover region. In future studies, these equations can be used to analyze the interesting physics of vortices or the excitation spectrum in the Fermi condensate.

Wei Yi
University of Michigan

Date submitted: 29 Nov 2005