Abstract Submitted
for the MAR06 Meeting of
The American Physical Society

Traveling the configurational space of binary alloys

G. TRIMARCHI, S. V. BARABASH, A. ZUNGER, National Renewable Energy Lab., Golden CO 80401 — Binary $A_{1-x}B_x$ alloys can exist in any of the 2^N possible configurations on a periodic lattice of N sites. In many areas of the alloy theory one needs to search all lattice configuration. Such a problem arises, for example, when the $T = 0$ ground state configurations are sought, or in problems of materials design, where it is desirable to scan all the configurations to find the configuration σ^* that has specific property. This task is complicated by (i) the huge computational demand for large N and (ii) by the possibility that the $P(\sigma)$ is sensitive to the cell shape. In this talk we present a new computational approach for defining and searching the configurational space, that is based on (i) the exhaustive enumeration of the “Inequivalent Cell Shapes”, and, for a given cell shape on (ii) the sampling of the related “Same-Shape-Structures” via a Genetic Algorithm. We apply this procedure to few ground state problems in semiconductor and metal alloys: For $(AC)_x(BC)_{1-x}$ tetrahedral semiconductor alloys we predict the lattice configurations of minimum bond-bending and bond-stretching strain both in free-floating bulk and under the epitaxial strain. We show that the chalcopyrite structure remains a ground state even under epitaxy. For Au-Pd alloy modelled with the mixed basis cluster expansion Hamiltonian, we determine the ground state structures and compare the convex hull to the one found previously by the direct enumeration approach.

1Funded by DOE-SC-BES-DMS

Giancarlo Trimarchi
National Renewable Energy Lab., Golden CO 80401

Date submitted: 30 Nov 2005

Electronic form version 1.4