Abstract Submitted for the MAR06 Meeting of The American Physical Society

NMR investigation of Sn-doped CeRhIn₅ R. R. URBANO, N. J. CURRO, E. D. BAUER, D. MIXSON, J. L. SARRAO, J. D. THOMPSON — We have studied the local environment of the In(1) sites in the paramagnetic (PM) and antiferromagnetic (AFM) states of the heavy fermion compound CeRhIn_{5-x}Sn_x $(0.0 \le x \le 0.4)$ using Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) measurements. The AFM state can be continuously suppressed by Sn doping such that the Neel temperature T_N goes to zero at $x_c \cong 0.4$. ¹¹⁵In NQR data in the PM state reveal that the suppression of T_N as a function of x is accompanied by a frequency shift and a broadening of the line. We also report spin-lattice relaxation rate T_1^{-1} as a function of x and T.

Ricardo Urbano Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.

Date submitted: 30 Nov 2005

Electronic form version 1.4