Abstract Submitted for the MAR06 Meeting of The American Physical Society

Determining the Products and Mechanism of the $C_2Cl_3+O_2$ Reaction by Time-Resolved FTIR Emission Spectroscopy HONGMEI SU, TIANCHENG XIANG, SHAOLEI ZHAO, CONGYUN SHI — The reaction products and mechanism of the C_2Cl_3 radical with O_2 have been studied by time-resolved FTIR emission spectroscopy. The chlorinated vinyl radical, C₂Cl₃, was generated by 248 nm photolysis of a C_2Cl_4 precursor. Vibrationally excited CO, CO₂ and ClCO products were observed. The time evolution of the emission intensity shows that CO_2 and ClCO are primary reaction products. In contrast, CO emission does not decay until ms time scale indicating that CO products are due to secondary reactions, most likely, the further dissociation of ClCO. Two primary reaction channels are identified: $C_2Cl_3 + O_2 \quad \diamondsuit CO_2 + CCl_3 \diamondsuit ClCO + COCl_2$ When reacting with O₂, the observed products and channels of the chlorinated vinyl radical, C₂Cl₃, turned out to be very similar to its counterpart, vinyl radical C₂H₃. Morokuma's DFT study^[1] of the reaction $C_2H_3+O_2$ shows that the main reaction path proceeds through a three-membered CCO ring adduct. The question is, does C_2Cl_3 go through the same reaction path as C_2H_3 ? Does the substitution of H atom by heavier Cl atom make any difference in regard to the reaction mechanism? Further investigation combining *ab initio* calculation is under way.

 A.M.Mabel, E.W.G.Diau, M.C.Lin, and K.Morokuma, J.Am.Chem.Soc. 118, 9759 (1996)

> Hongmei Su Institute of Chemistry, Chinese Academy of Sciences

Date submitted: 03 Jan 2006

Electronic form version 1.4