Abstract Submitted for the MAR06 Meeting of The American Physical Society

Composition dependence of the diffuse scattering in relaxor (1x)Pb(Mg_{1/3}Nb_{2/3})O₃-xPbTiO₃ ($0 \le x \le 0.40$) M. MATSUURA, K. HIROTA, ISSP The University of Tokyo, P. M. GEHRING, NIST Center for Neutron Research, ZUO-GUANG YE, W. CHEN, Department of Chemistry Simon Fraser University, G. SHIRANE, Deapartment of Physics Brookhaven National Laboratory — We have studied composition dependence of diffuse scattering in the relaxor system (1-x)Pb $(Mg_{1/3}Nb_{2/3})O_3-x$ PbTiO₃ (PMN-xPT) with x = 0, 10, 20, 30, and40% by neutron diffraction. The addition of ferroelectric PbTiO₃ (PT) modifies the "butterfly" and "ellipsoidal" diffuse scattering patterns observed in pure PMN (x = 0), which are associated with the presence of randomly oriented, polar nanoregions (PNR). The spatial correlation length ξ derived from the width of the diffuse scattering increases from 12.6 Å for PMN (x = 0) to 350 Å for PMN-20% PT, corresponding to an enlargement of the PNR. The integrated diffuse scattering intensity, which is proportional to χ'' , grows and reaches a maximum at x = 20%. Beyond x = 30% PT, a concentration very close to the morphotropic phase boundary (MPB), no diffuse scattering is observed below T_C , and well-defined critical behavior is observed. By contrast, the diffuse scattering for $x \leq 20\%$ persists to low temperatures, where the system retains an average cubic structure $(T_C = 0)$. We can simulate the wave vector dependence of the diffuse scattering by assuming that it arises from the condensation of a soft transverse-optic (TO) phonon.

> Masato Matsuura ISSP The University of Tokyo

Date submitted: 30 Nov 2005

Electronic form version 1.4