Measuring the transverse magnetization of rotating ferrofluids MANFRED LÜCKE, J. EMBS, S. MAY, C. WAGNER, A. KITYK, A. LESCHHORN, University Saarbrücken — We report on measurements of the transverse magnetization of a ferrofluid rotating as a rigid body in a constant magnetic field, H_0, applied perpendicular to the axis of rotation. The rotation of the fluid leads to a non-equilibrium situation, where the ferrofluid magnetization, M, and the magnetic field within the sample, H, are no longer parallel to each other. The off-axis magnetization perpendicular to H_0 is measured as a function of both the applied magnetic field, H_0, and the angular frequency Ω. The latter ranges from a few Hz to frequencies well above a characteristic inverse Brownian relaxation time. Our experimental results strongly indicate that the transverse magnetization is caused only by a small fraction of the colloidal ferromagnetic particles. The effect of the polydispersity of the ferrofluid is discussed. Experimental results are compared to predictions based on several theoretical models. A single-time relaxation approach for the so-called effective field and a field dependent Debye relaxation of M yield reasonably good shapes of the curves of transverse magnetization versus Ω. However, like the other models they overestimate their magnitudes.

Manfred Lücke
University Saarbrücken

Date submitted: 30 Nov 2005 Electronic form version 1.4