Correlated hybridization in transition metal complexes\(^1\) ARND HUBSCH, Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany, JONG-CHIN LIN, JIANPING PAN, DANIEL L. COX, Department of Physics, University of California, Davis, CA 95616 — We apply local orbital basis density functional theory (using SIESTA) coupled with a mapping to the Anderson impurity model to estimate the Coulomb assisted or correlated hybridization between transition metal d-orbitals and ligand sp-orbitals for a number of molecular complexes. We find remarkably high values which can have several physical implications including: (i) renormalization of effective single band or multi-band Hubbard model parameters for the cuprates and, potentially, elemental iron, and (ii) spin polarizing molecular transistors.

\(^1\)Research supported by NSF grant PHY 0120999 (the Center for Biophotonics Science and Technology), by the US Department of Energy, Division of Materials Research, Office of Basic Energy Science, and by DFG grant HU 993/1-1.