Structure of MgO(MgSiO$_3$)$_n$ in Earth’s Lower Mantle: ab initio calculations

PATRIC OULEVEY, MOHAMMED SAHNOUN, Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland, SIMON PIETRO DI PIERRO, Laboratoire de Sciences de la Terre, UMR CNRS 5570, Ecole Normale Supérieure de Lyon, France, BERNARD GROBÉTY, Department of Mineralogy, University of Fribourg, CH-1700 Fribourg, Switzerland, CLAUDE DAUL, Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland

— Ruddlesden-Popper (RP) compounds are composed of alternating perovskite-type and rocksalt-type structural elements. MgSiO$_3$ and MgO are found as separate phases in Earth’s lower mantle. Both structural elements occur also in the hypothetical RP-series MgO(MgSiO$_3$)$_n$. It is interesting to explore the high pressure-high temperature stability of such RP-structures. Using the augmented plane wave implementation of Density Functional Theory we investigate the structural stability at lower mantle conditions of the member with $n = 1$ e.g. Mg$_2$SiO$_4$. The goal of the present calculations is to test the stability of this Ruddlesden-Popper phase relative to γ-(Mg,Fe)$_2$SiO$_4$ and the assemblage MgSiO$_3$-perovskite + MgO magnesiowüstite. We will present our results of this study.

Patric Oulevey
Department of Chemistry, University of Fribourg,
CH-1700 Fribourg, Switzerland

Date submitted: 03 Dec 2005