Room Temperature Ferromagnetism in Transition Metal Doped CVD-Grown ZnO Films and Nanostructures

D.H. HILL, R. GATEAU, R.A. BARTYNSKI, P. WU, Y. LU, L. WIELUNSKI, V. POLTAVETS, M. GREENBLATT, Rutgers University, D.A. ARENA, NSLS, J. DVORAK, Montana State University, S. CALVIN, Sarah Lawrence College — We have characterized the chemical, compositional, and magnetic properties of Mn- and Fe-ion implanted epitaxial ZnO films and single crystal nanostructures grown by MOCVD as candidate room temperature diluted magnetic semiconductors. X-ray absorption spectroscopy (SXAS) shows that Mn-implanted films contain Mn$^{2+}$ ions which convert to a mixture of Mn$^{3+}$ and Mn$^{4+}$ upon annealing. Fe-implanted films contain a mixture of Fe$^{2+}$ and Fe$^{3+}$ which converts to a higher concentration of Fe$^{3+}$ upon annealing. XAS and preliminary analysis of EXAFS data indicate that the TM ions are substitutional for Zn. SQUID magnetometry shows that as-implanted films are ferromagnetic at 5K and the annealed films are ferromagnetic at room temperature. X-ray diffraction shows that the annealed films remain epitaxial with excellent long range order. Rutherford backscattering spectrometry indicates a substantial recovery of local order upon annealing as well. The properties of in-situ Fe-doped MOCVD-grown ZnO epitaxial films and nanostructures will also be discussed.

1NSF-ECS-0224166