Semiconductor lasers in optical communication band with very broadband tunability

GAGIK SHMAVONYAN, State Engineering University of Armenia — Because the optical fiber has the low-loss window covering from below 1300 nm to above 1600 nm, devices used for optical communication are required to have the broadband characteristics. Several types of non-identical multiple quantum wells had been experimented. One has five 6 nm $\text{In}_{0.67}\text{Ga}_{0.33}\text{As}_{0.72}\text{P}_{0.28}$ quantum wells and two 15 nm $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}$ quantum wells, bounded by 15 nm $\text{In}_{0.86}\text{Ga}_{0.14}\text{As}_{0.3}\text{P}_{0.7}$ quantum barrier. One type of the non-identical multiple quantum wells has been used to fabricate the semiconductor optical amplifiers for semiconductor lasers with broadband tunability. Inserting the semiconductor optical amplifier in an external-cavity configuration with a grating as the feedback, the external-cavity semiconductor laser is tunable from 1295 nm to 1570 nm, which covers almost the entire low-loss window of the optical fiber. Also, using reflected-type grating telescope configuration, we are able to simultaneously generate two wavelengths. The two lasing wavelengths are tunable from a few nm separation to 170 nm separation. Simultaneous generation of two wavelengths at 1344 nm and 1514 nm in optical communication band is demonstrated.

Gagik Shmavonyan
State Engineering University of Armenia

Date submitted: 03 Dec 2005