Abstract Submitted for the MAR06 Meeting of The American Physical Society

External and internal magnetic-field effects on ferroelectricity in orthorhombic rare-earth manganites H. KUWAHARA, K. NODA, M. AKAKI, Dept. of Phys., Sophia Univ. — We report the dielectric and magnetic properties of the perovskite $(Eu, Y)MnO_3$ crystal without the presence of the 4f magnetic moments of the rare earth ions. The subject compound, $(Eu, Y)MnO_3$, was controlled the average ionic radius of the A site so that it was the same as that of $TbMnO_3$ in which the intriguing magnetoelectric effect has been recently discovered. The (Eu,Y)MnO₃ crystal was found to have two distinct ferroelectric phases with polarization along the a (P_a , $T \leq 23$ K) and c (P_c , 23K $\leq T \leq 25$ K) axes in the orthorhombic *Pbnm* setting in a zero magnetic field. In addition, we have demonstrated a magnetic-field-induced switching between these ferroelectric phases: P_a changed to P_c by the application of magnetic fields parallel to the *a* axis (H_a). In analogy to the case of P_c in TbMnO₃, this result is possibly interpreted as follows. In the case of $(Eu, Y)MnO_3$, Mn 3d spins rotate in the ab plane and P_a would emerge in a zero field. In the H_a , the field will force the spins to rotate in the bc plane, in which P_c would be stabilized. Magnetization measurements supported this interpretation: We confirmed the change of the spin rotation axis of the helix from the c axis to the a axis induced by application of the H_a because there is no 4f moments acting as an internal magnetic field and interacting with the 3d spins. Results obtained with other rare-earth manganites such as $(Gd,Tb)MnO_3$ and $(Eu,Ho)MnO_3$ will be presented.

> H. Kuwahara Dept. of Phys., Sophia Univ.

Date submitted: 30 Nov 2005

Electronic form version 1.4