Abstract Submitted for the MAR06 Meeting of The American Physical Society

Autler-Townes splitting in a sodium molecular-ladder scheme¹ CHIN-CHUN TSAI, RAY-YUAN CHANG, Deparment of Physics, National Cheng-Kung University, Tainan, 70101, Taiwan, THOU-JEN WHANG, CHUEN-PING CHENG, Department of Chemistry, National Cheng-Kung University, Tainan 70101, Taiwan — We report results from studies of the Autler-Townes (AT) splitting observed in sodium dimer using optical-optical double resonance spectroscopy. In our experiment, a single line Ar⁺ laser at 4727 Å pumps the thermally populated ground state level $X \, {}^{1}\Sigma_{g}^{+}(v'' = 1, J'' = 37)$ of Na₂ to the intermediate $B \, {}^{1}\Pi_{u}(v' = 9, J' = 38)$ level. Then, a single mode cw Ti:sappher or dye laser couples to the higher Rydberg states. The signals are detected by monitoring the UV fluorescence from the triplet gerade states back to the $a \, {}^{3}\Sigma_{u}^{+}$ state via collision energy transfer. Unlike all the other intermediate levels pumped by different Ar⁺ laser lines, this strong transition populated the $B \, {}^{1}\Pi_{u}(v' = 9, J' = 38)$ level leads to an AT splitting on all the levels observed in the higher Rydberg states, for example, $3, 5, 6, 7 \, {}^{1}\Pi_{g}$ states and $3, 5, 6 \, {}^{1}\Delta_{g}$, states.

¹We greatly acknowledge the support of the National Science Council, Taiwan.

Chin-Chun Tsai Dept. of Physics, National Cheng-Kung University

Date submitted: 30 Nov 2005

Electronic form version 1.4