Abstract Submitted for the MAR06 Meeting of The American Physical Society

Analytic structure of Bloch functions for linear molecular chains¹ EMIL PRODAN, PRISM, Princeton University — In this talk I will discuss Hamiltonians of the form $H = -\nabla^2 + v(x, y, z)$, with v(x, y, z) periodic along the z direction, v(x, y, z + b) = v(x, y, z). The wavefunctions of H are the well known Bloch functions $\psi_{n,\lambda}(x, y, z)$, with the fundamental property $\psi_{n,\lambda}(x, y, z + b) = \lambda \psi_{n,\lambda}(x, y, z)$ and $\partial_z \psi_{n,\lambda}(x, y, z + b) = \lambda \partial_z \psi_{n,\lambda}(x, y, z)$. I will give the generic analytic structure (i.e. the Riemann surface) of $\psi_{n,\lambda}(x, y, z)$ and their corresponding energy, $E_n(\lambda)$, as functions of λ . I will also discuss several applications, like a compact expression of the Green's function or the asymptotic behavior of the density matrix and other correlation functions for insulating molecular chains.

¹Work supported by Grant. No. NSF-DMR03-13980

Emil Prodan PRISM, Priceton University

Date submitted: 30 Nov 2005

Electronic form version 1.4