A consistent, linear-response approach to LDA+U
MATTEO COCOCCIONI, Department of Materials Science and Engineering, MIT

Hubbard U-correction to LDA or GGA has proven very effective in describing several strongly-correlated systems for which these approximations to DFT otherwise fail. Constrained DFT or semiempirical approaches have been often used to compute the Hubbard U. I introduce here an alternative scheme to evaluate the effective electronic interaction in a fully consistent way. This approach is based on the linear response of the system under consideration to a potential shift acting on the localized orbitals of the correlated sites. Using the occupations of these orbitals as the relevant electronic degrees of freedom we compute the on-site electronic coupling as the difference between the inverse of the bare and of the fully-interacting response matrices. The U computed in this way thus corresponds to the effective, atomically-averaged kernel of the Hartree-exchange-correlation interaction, in agreement with the second quantization expression of the "+U" energy functional. In this way the strength of the "+U" correction is evaluated from the same DFT scheme we aim to correct so that LDA+U becomes a consistent non-parametric method, with no need for semiempirical evaluations of the effective coupling.

With this approach we successfully studied the structural, electronic, chemical and electrochemical properties of several transition-metal compounds. Examples will include minerals in the Earth’s interior\(^1\), cathode materials for next-generation lithium batteries\(^2\) and metal-organic complexes \(^3\).

3) H. J. Kulik, M. Cococcioni, D. Scherlis and N. Marzari, submitted to PRL.