Abstract Submitted for the MAR06 Meeting of The American Physical Society

Growth mechanism changes in pseudo-dewetted monolayer poly(ethylene oxide) crystallization DUN-SHEN ZHU, ER-QIANG CHEN, AN-CHANG SHI, STEPHEN CHENG, PEKING UNIVERSITY, CHINA COL-LABORATION, MCMASTER UNIVERSITY, CANADA COLLABORATION, UNIVERSITY OF AKRON, USA COLLABORATION — Crystal growth mechanism changes have been observed in pseudo-dewetted monolayers of low molecular weight (LMW) (PEO) on freshly cleaved hydrophilic mica surfaces [HPEO(4250) which have -OH groups at both ends and MHPEO(4700) which has one -OH and one -OCH₃ as end groups]. X-ray scattering reflectivity measurements show a wetted monolayer of molten PEO with a thickness of ~ 4.5 nm on the mica surface. Non-adsorbed PEO droplets sit on top of the wetted monolayer. A two-step process for PEO single crystal growth under isothermal conditions was identified utilizing in-situ atomic force microscopy at different crystallization temperatures (T_x) . In the first step, the crystal grows within the droplet which supplies the molten PEO that participates in the crystal formation. In this second-step, the wetted monolayer at the growth front is depleted by about 1.5 - 2.5 nm. The growing crystal lateral sizes obey a power law of t^{α} (t: time). At a high T_x of 63 °C for MHPEO(4700), the growth behavior obeys $r \propto t$ ($\alpha = 1$). While in the case of HPEO(4250), its growth behavior follows $r \propto t^{0.5}$ ($\alpha = 0.5$) in the whole T_x range. With decreasing T_x , the growth of MHPEO(4700) falls into a scaling law of $r \propto t^{\alpha}$ (0.5 < α < 1).

Stephen Cheng

Date submitted: 30 Nov 2005

Electronic form version 1.4