Abstract Submitted for the MAR06 Meeting of The American Physical Society

Persistence Properties of Interacting Steps: Qualitative Failure of Mean Field¹ HAILU GEBREMARIAM, T. L. EINSTEIN, U. of Maryland, College Park, CHANDAN DASGUPTA, Indian Inst. of Science, Bangalore — In studying the persistence properties of fluctuating steps on a vicinal surface, we examine the effect of interactions between steps on the correlation function C(t) of step excursions from their mean position. For times much longer than the correlation time τ_c , $C(t) \propto exp(-t/\tau_c)$. The standard way to include step repulsions ($\propto A/l^2$) simply is the mean field, Gruber-Mullins (GM) approximation, in which each step experiences a harmonic potential that narrows with increasing repulsion.² Monte Carlo simulations of a terrace-step-kink model show that τ_c then decreases with increasing A. Including the full repulsion between neighboring steps, we find the opposite trend: τ_c increases with A, due to in-phase meandering absent in GM.³ However, the time constant τ_s associated with the exponential decay of the survival probability decreases with A. The ratio τ_s/τ_c decreases slowly with A, from 0.38 at A = 0, thereby satisfying the theorem that this ratio be $< 1.^2$. We also discuss the scaling properties of autocorrelation and survival, in particular the dependence on sampling time and on lateral system size.

¹Work at UM supported by NSF MRSEC DMR 0520471. ²C. Dasgupta et al., Phys. Rev. B 69, 022101 (2004) ³Hailu Gebremariam, Ph.D thesis, and HG, CD, & TLE, to be published.

> Theodore Einstein University of Maryland

Date submitted: 30 Nov 2005

Electronic form version 1.4