Abstract Submitted for the MAR06 Meeting of The American Physical Society

Crystal Field Fluctuations in a Frustrated Pyrochlore Antiferromagnet Tb₂Ti₂O₇. HAMID R. MOLAVIAN, MICHEL J. P. GINGRAS, Department of physics, University of Waterloo — The antiferromagnetic pyrochlore Tb₂Ti₂O₇ presents a challenging puzzle to experimentalists and theorists studying frustrated magnets. Results from muon spin resonance and neutron scattering experiments for Tb₂Ti₂O₇ reveal a paramagnetic structure down to 50mK despite an antiferromagnetic Curie-Weiss temperature, $\theta_{CW} = -20$ K. Crystal field calculations show that the Tb³⁺ ion in Tb₂Ti₂O₇ is a ground state doublet with local $\langle 111 \rangle$ anisotropy and is separated from the first excited doublet state by a gap of 20K. We apply the Rayleigh-Schrodinger method to map the four states problem with exchange and dipole-dipole interactions onto an effective Hamiltonian with two states per ion. We give some properties of this effective Hamiltonian and discuss the possible classical and quantum phases of Tb₂Ti₂O₇.

> Hamid R. Molavian Department of physics, University of Waterloo

Date submitted: 30 Nov 2005

Electronic form version 1.4