High-pressure and high-temperature phases of nitrous oxide1

BRENDAN OSBERG, STANIMIR A. BONEV, Department of Physics, Dalhousie University, Canada — The phase diagram of nitrous oxide (N\textsubscript{2}O) is investigated up to 50 GPa and 1000 K using first principles theory. The calculated stability and properties of numerous crystalline structures are compared with experimental results. We identify the structure of phase II of N\textsubscript{2}O. On the basis of its stability with respect to orthorhombic deformations, an explanation for measured Raman spectra is provided. Similarly to CO\textsubscript{2}1, crystalline structures with bent molecules are found to be extremely unfavorable energetically.

1Work supported by the NSERC of Canada.