Effect of electron-electron interaction on linear and nonlinear optical phenomena in quantum dot systems in interlevel resonance region

VICTOR BONDARENKO, WSU, MIROSLAW ZALUZNY1, IF UMCS, YANG ZHAO, WSU — We theoretically investigate linear and nonlinear optical phenomena in quantum dot (QD) systems caused by interlevel transitions. Effect of electron-electron (e-e) interaction in the systems on the optical phenomena is in the focus of the work. The e-e interaction is taken into account by employing the self-consistent field approach in the quasistatic limit. We show that presence of metal surface, and especially another resonant system, can dramatically enhance the effect of the e-e interaction on the optical phenomena. We discuss the conditions for the intrinsic optical bistability in QD systems caused by the e-e interaction. The obtained results can find applications for design, fabrication, and exploiting nanooptoelectronics devices, in part, all-optical components like QD-based optical switches and optical transistors.

1Poland

Victor Bondarenko
WSU

Date submitted: 30 Nov 2005
Electronic form version 1.4