Abstract Submitted for the MAR06 Meeting of The American Physical Society

Studying the electronic structure in pure and electron doped MgB_2^1 Y. ZHU, R.F. KLIE, L. WU, J.C. ZHENG, Center for Functional Nanomaterials, L.D. COOLEY, Dept. Cond. Matt. Phys. & Mat.Sci., Brookhaven National Lab — We use high-energy electrons to reveal electronic structure information to understand the effects of electron doping in MgB₂ superconductors. Angle-resolved electron energy-loss spectroscopy was used to investigate the difference in the excited states, while image-coupled quantitative electron diffraction was used to map the valence electron distribution, in pure and Al-doped MgB_2 . The results were compared with density functional theory calculations. We found significant changes in the B K-edge fine structure as a function of electron doping concentration, suggesting the corresponding σ and π bands are being filled simultaneously. The filling of the σ -band states near the Fermi level reduces the critical temperature T_c of highly doped MgB₂ to a level comparable to that of other π -band superconductors such as intercalated graphite. Valence electron maps reveal that electron doping causes considerable charge transfer and accumulation in charge density between both Al-B and B-B bonds. This results in a shortened c-axis of the unit cell and higher phonon frequency, which eventually quenches superconductivity altogether. The relationship between charge transfer and inter-band scattering are also examined.

¹Work supported by the U.S. Department of Energy under contract DE-AC02-98CH10886

Y. Zhu

Date submitted: 03 Dec 2005

Electronic form version 1.4