A 13C NMR Spectroscopic Investigation of Carbon Nanohorns

HIDETO IMAI, PANAKKATTU BABU, ERIC OLDFIELD, ANDRZEJ WIECKOWSKI, DAI SUKE KASUYA, TAKE SHI AZAMI, YUICHI SHIMAKAWA, MASAKO YUDASAKA, YOSHIMI KUBO, SUMIO IIJIMA, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN TEAM, FUNDAMENTAL AND ENVIRONMENTAL RESEARCH LABORATORIES, NEC CORPORATION, JAPAN TEAM, SORST, JAPAN SCIENCE AND TECHNOLOGY AGENCY, C/O NEC TEAM, MEIJO UNIVERSITY, NAGOYA, JAPAN TEAM — 13C NMR spectroscopic investigation of carbon nanohorn aggregates (CNH) shows that they consist of two components, characterized by different chemical shifts and spin-lattice relaxation (T_1) behavior. The first component with a chemical shift of 124 ppm and faster T_1 is assigned to the nanotube-like horns on the particles’ surface. The second component with a chemical shift of 116 ppm and much slower T_1 is assigned to the graphite-like part of the CNH. Integrated peak area measurements indicate a 1:2 ratio of nanohorns to the graphite-like substrate. The lack of a Knight shift and the absence of a clear Korringa relaxation for either component of T_1 ruled out any metallic behavior and indicate a relaxation behavior characteristic of semiconducting materials with paramagnetic centers arising from structural defects. We also observed an anomalous change in T_1 in the nanohorn domains near 17 K, suggesting the development of an antiferromagnetic correlation between localized electron spins.

Panakkattu Babu
University of Illinois at Urbana-Champaign

Date submitted: 19 Jan 2006