In-plane Torque Measurement on CeCoIn$_5$ Single Crystals1 T. HU, H. XIAO, C. C. ALMASAN, Kent State University, T. A. SAYLES, M. B. MAPLE, University of California, San Diego — We report in-plane torque measurements on single crystals of the heavy fermion superconductor CeCoIn$_5$ performed in the normal state at 1.9, 3, 6, and 10 K, as a function of angle and applied magnetic field. The measurements at constant angle were done in sweeping the magnetic field up to 14 T. The measured torque has a reversible and an irreversible component, with the former larger than the latter. The reversible component can be expressed as $\tau_{\text{rev}}(\theta) = \tau_2 \sin 2\theta + \tau_4 \sin 4\theta$ (θ is the angle between the applied field and the a-axis of the crystal), which is typical of systems with long range magnetic order. However, it has been reported that the heavy fermion superconductor CeCoIn$_5$ has no long range magnetic order, but only short range antiferromagnetic fluctuations. The temperature and magnetic field dependence of the coefficients τ_2 and τ_4 will be discussed. The torque vs field curves at fixed angles show De-Hass Van-Alphen effect at temperatures as high as 10 K. The possible reasons behind this will also be discussed.

1This research was supported by the National Science Foundation under Grant No. DMR-0406471 at KSU and the US Department of Energy under Grant No. DE-FG03-86ER-45230 at UCSD