IR phonons induced by the helical magnetic order in multiferroic TbMn$_2$O$_5$1 ROLANDO VALDES AGUILAR, A. SUSHKOV, H.D. DREW, University of Maryland. College Park, MD 20742, S.W. CHEONG, Rutgers University. Piscataway, NJ 08854 — The interplay between magnetic order and the lattice in multiferroic crystals has produced such interesting phenomena as polarization reversal and change of dielectric properties with magnetic fields 2. Ferroelectricity in the multiferroic materials REMn$_2$O$_5$ (RE = rare earth) is thought to originate from a helical antiferromagnetic order. In order to study this possibility we have made an infrared study of TbMn$_2$O$_5$. We find that several IR phonons show correlations with the distinct magnetic and dielectric phase transitions. Of special interest is the phonon spectrum for light polarization along the b axis where a mode at ~ 706 cm$^{-1}$ exists only in the commensurate magnetic phase with $k = (1/2,0,1/4)$ in the temperature range of 24-33 K. Possible scenarios for this phonon are: (1) the appearance of zone-folded modes; (2) the activation of previously silent modes due to the reduction of crystal symmetry. These scenarios are discussed in terms of the spin-lattice coupling in this class of materials.

1Work supported by NSF-MRSEC under grant DMR-0520471