Magnetic and non-magnetic substitutions in MgB$_2$ single crystals: influence on superconducting properties and structure

JANUSZ KARPINSKI, NIKOLAI D ZHIGADLO, KRZYSZTOF ROGACKI, BERTRAM BATLOGG, GETZ SCHUCK, Laboratory for Solid State Physics ETH Zurich, ROMAN PUZNIAK, ANDRZEJ WISNIEWSKI, Institute of Physics PAS Warsaw, RENATO GONNELLI, Politecnico di Torino — Pure and substituted single crystals of MgB$_2$ have been grown at high pressure (30 kbar) using the cubic anvil technique. The crystals have very low residual resistivity $\rho_0(40 \text{ K}) \approx 0.5$ and a sharp transition $\Delta T_c \approx 0.2 \text{ K}$. Magnetic (Mn, Fe) and non-magnetic (Al, C) ions have been substituted to study their effect on superconductivity and on the impurity scattering in and between the σ and π bands. Single-phase Mg$_{1-x}$Al$_x$B$_2$ and MgB$_{2-x}$C$_x$ crystals were grown for $x=0-0.3$. Al and C cause a similar moderate decrease of T_c. Magnetic ions, such as Fe$^{3+}$ and Mn$^{2+}$ suppress T_c very effectively, due to magnetic pair breaking. Superconductivity is completely suppressed for by 2% Mn. Fe substitution decreases T_c less rapidly than Mn but much faster than Al and C. Carbon substitution increases the H_{c2} twice, while Al, Fe and Mn substitutions decrease this field. H_{c2} anisotropy decreases with all substitutions, but the temperature dependence of the anisotropy is different, due to different scattering rates in the π and σ bands. For Mn and Al, π and σ energy gaps exist up to the highest substitution level, while for C substitution, merging of these gaps is observed indicating interband scattering.

Janusz Karpinski
Laboratory for Solid State Physics ETH 8093-Zurich Switzerland

Date submitted: 30 Nov 2005