Effective Hamiltonian study of PbSc$_{1/2}$Nb$_{1/2}$O$_3$ under pressure
ERIC COCKAYNE, SILVIA TINTE, BENJAMIN P. BURTON, NIST, UMESH V. WAGHMARE, JNCASR — In general, increasing pressure depresses the transition temperature T_{FE} of ferroelectric transitions, and sufficient pressure yields a FE \rightarrow paraelectric (PE) transition. A more complicated behavior is observed for disordered PbSc$_{1/2}$Nb$_{1/2}$O$_3$ (PSN). At atmospheric pressure, PSN exhibits relaxor ferroelectric (RFE) properties within a small temperature range before transforming to a FE phase at low temperatures. Pressure of approximately 1.5 to 2.5 GPa induces a low-temperature RFE state without a RFE/FE phase boundary.[E. L. Venturini et al.] To investigate the effects of pressure on phase transitions in PSN, we used a first-principles based effective Hamiltonian. Our effective Hamiltonian includes a local field term arising from the charge difference between the Sc$^{3+}$ and Nb$^{5+}$ ions. Under pressure, the local field term changes little, while the FE well depths decrease, increasing the relative importance of the local fields. Molecular dynamics simulations show that T_{FE} decreases with temperature and that the phase transition broadens.

Eric Cockayne
NIST

Date submitted: 30 Nov 2005

Electronic form version 1.4