The Pressure Effect on the Ferroelectricity in Multiferroic
RMn_2O_5 ($R=\text{Tb, Dy, Ho}$) CLARINA DELA CRUZ, BERND LORENZ, CHING-
WU CHU, Dept. of Physics and TCSUH, University of Houston, SOON YONG
PARK, SANG-WOOK CHEONG, Dept. of Physics and Astronomy and RCEM,
Rutgers University, MARIN GOSPODINOV, Inst. of Solid State Physics, Bulgar-
ian Academy of Sciences — The effect of isotropic pressure (P) up to 1.7 GPa on the
magnetic and ferroelectric phase diagram of RMn_2O_5 ($R=\text{Tb, Dy, Ho}$) is investi-
gated. Distinctive anomalies of the b-axis dielectric constant identifying the critical
temperatures for the various magnetic and ferroelectric transitions are monitored as
a function of P and the temperature-pressure phase diagram of multiferroic RMn_2O_5
was constructed. The magnetic and ferroelectric orders are stabilized under pressure
and their respective onset temperatures increase with P. Most notably, the step-like
change of the dielectric constant at lower temperatures (T_{C_2}) that is associated with
a drop in the ferroelectric polarization is suddenly quenched upon passing a critical
pressure. These results suggest that above the critical pressure the ferroelectric po-
larization is restored below T_{C_2} and the ferroelectric phase in RMn_2O_5 is stabilized
and extends to the lowest temperatures. *also at LBNL, Berkeley and HKUST, Hong Kong

Clarina dela Cruz
Dept. of Physics and TCSUH, University of Houston

Date submitted: 30 Nov 2005
Electronic form version 1.4