Abstract Submitted for the MAR06 Meeting of The American Physical Society

Spin Anisotropy Effects in Dimer Single Molecule Magnets¹ DMITRI EFREMOV, Technische Universitaet Dresden, Germany, RICHARD KLEMM, Kansas State University — We present a model of equal spin s_1 dimer single molecule magnets. The spins within each dimer interact via the Heisenberg and the most general set of four quadratic anisotropic spin interactions with respective strengths J and $\{J_i\}$, and with the magnetic induction **B**. For antiferromagnetic Heisenberg couplings (J < 0) and weak anisotropy interactions $(|J_i/J| \ll 1)$, the low temperature T magnetization M(B) exhibits $2s_1$ steps, the height and midpoint slope of the sth step differing from their isotropic limits by corrections of $\mathcal{O}(J_j/J)^2$, but the position occurring at the energy level-crossing magnetic induction $B_{s,s_1}^{\rm lc}(\theta,\phi)$, where θ, ϕ define the direction of B. We solve the model exactly for $s_1 = 1/2, 1, 1$ and 5/2. For weakly anisotropic dimers, the Hartree approximation yields analytic formulas for M(B) and $C_V(B)$ at arbitrary s_1 that accurately fit the exact solutions at sufficiently low T or large B. Low-T formulas for the inelastic neutron scattering $S(q,\omega)$ and the EPR $\chi(\omega)$ in an extended Hartree approximation are given. Our results are discussed with regard to existing experiments on $s_1 = 5/2$ Fe₂ dimers, suggesting further experiments on single crystals of these and some $s_1 = 9/2$ [Mn₄]₂ dimers are warranted.

¹Supported by the Netherlands Foundation for the Fundamental Research of Matter and by the NSF under contract NER-0304665

> Richard Klemm Kansas State University

Date submitted: 06 Jan 2006

Electronic form version 1.4