Abstract Submitted for the MAR06 Meeting of The American Physical Society

Understandings of Formation of N-Ntrosoamine in Smoke.¹ YI-LEI ZHAO², CARLOS GONZALEZ³, NIST, MANUEL MARQUEZ⁴, PMUSA Research Center, 4201 Commerce Rd., Richmond, VA 23234, INEST TEAM⁵, CTCN TEAM⁶ — Formation of N-nitrosoamine compounds is highly concerned in combustion and past-combustion. In chemical laboratory, nitrosylation of amine toward N-nitrosoamine generally requires nitrosonium donor and acidic condition. Recently, an unexpected reaction was observed to be relevant to nitrogen dioxide, a common component of past-combustion gas; an alternative non-ionic pathway must lead to the rapid nitrosylation. Here, we proposed a radical mechanism, by which aminoradical is formed by H-abstraction of nitrogen dioxide, followed by radical scavenging with nitric oxide. Relatively low activation energy of 10-11 kcal/mol (ca., CBS-QB3) of the radical mechanism rationalized the feasibility of N-nitrosoamine formation in colloids after combustion of bio-materials. Acid-catalyzed nitrosylation in aqueous solution was also computed.

Yi-Lei Zhao National Institute of Standards and Technology, 100 Bureau Dr. MS 8380, Gaithersburg, MD 20899

Date submitted: 03 Dec 2005 Electronic form version 1.4

¹INEST program - PMUSA

²INEST fellow

³NIST Center for Theoretical and Computational Nanosciences

⁴INEST group

⁵INEST = Interdisciplinary Network of Emerging Science and Technology

⁶CTCN = NIST Center for Theoretical and COmputational Nanosciences