Time-resolved optical spectroscopy of the itinerant antiferromagnets UMGa_5 ($M=\text{Ni, Pt}$) EE MIN ELBERT CHIA, HAE JA LEE, MST-CINT, Los Alamos National Laboratory, ERIC BAUER, NAMJUNG HUR, MST-10, Los Alamos National Laboratory, RICHARD AVERITT, ANTOINETTE TAYLOR, MST-CINT, Los Alamos National Laboratory, JOHN SARRAO, MST-10, Los Alamos National Laboratory — We present time-resolved optical conductivity measurements of the itinerant antiferromagnets UNiGa_5 ($T_N=85\text{K}$) and UPtGa_5 ($T_N=25\text{K}$), as well as the parent material UGa_3, using a pump-probe technique. The relaxation time τ diverges near T_N, which we attribute to the opening of a spin gap. τ also diverges at the lowest temperatures, which is similar to that shown by the heavy fermion YbAgCu_4, but with no blocking of electron-phonon scattering within the DOS peak. The transient amplitude exhibits a sign change at T_N, whose temperature dependence is also consistent with the appearance of a spin gap. We will also attempt to analyze our data using the Rothwarf-Taylor model.

Date submitted: 10 Jan 2006

Ee Min Elbert Chia
Los Alamos National Laboratory