Time-resolved optical spectroscopy of the itinerant antiferromagnets UMGa_5 $(M=\text{Ni, Pt})$ EE MIN ELBERT CHIA, HAE JA LEE, MST-CINT, Los Alamos National Laboratory, ERIC BAUER, NAMJUNG HUR, MST-10, Los Alamos National Laboratory, RICHARD AVERITT, ANTOINETTE TAYLOR, MST-CINT, Los Alamos National Laboratory, JOHN SARRAO, MST-10, Los Alamos National Laboratory — We present time-resolved optical conductivity measurements of the itinerant antiferromagnets UNiGa$_5$ ($T_N=85$K) and UPtGa$_5$ ($T_N=25$K), as well as the parent material UGa$_3$, using a pump-probe technique. The relaxation time τ diverges near T_N, which we attribute to the opening of a spin gap. τ also diverges at the lowest temperatures, which is similar to that shown by the heavy fermion YbAgCu$_4$, but with no blocking of electron-phonon scattering within the DOS peak. The transient amplitude exhibits a sign change at T_N, whose temperature dependence is also consistent with the appearance of a spin gap. We will also attempt to analyze our data using the Rothwarf-Taylor model.

Ee Min Elbert Chia
Los Alamos National Laboratory