Magic structures of H-passivated (110) silicon nanowires 

TZULIANG CHAN, Ames Laboratory and Physics Department, Iowa State University, CRISTIAN V. CIOBANU, Division of Engineering, Colorado School of Mines, FENG-CHUAN CHUANG, NING LU, CAI-ZHUANG WANG, KAI-MING HO, US. DOE Ames Laboratory and Physics Department, Iowa State University — We report a genetic algorithm approach combined with ab initio calculations to determine the structure of hydrogenated (110) Si nanowires. As the number of atoms per length increases, we find that the cross section of the nanowire evolves from chains of six-atom rings, to fused pairs of such chains, to hexagons bounded by \{001\} and \{111\} facets. Our calculations predict that hexagonal wires become stable starting at about 1.2 nm diameter, which is consistent with recent experimental reports of nanowires with diameters of about 3 nm.

Cristian V. Ciobanu 
Colorado School of Mines

Date submitted: 30 Nov 2005 

Electronic form version 1.4