Stability Constraints and Local Criteria for the Bounds on T_c of Conventional Superconductors

JONATHAN E. MOUSSA, MARVIN L. COHEN, University of California at Berkeley and Lawrence Berkeley National Laboratory — In the regime of weak electron-phonon coupling, the scale of and bounds on T_c are set by the real phonon frequencies of a material. In the strong coupling limit of Eliashberg theory, the phonon frequencies no longer limit the transition temperature because T_c can grow without bound as $\sim \sqrt{\lambda \omega_{ph}}$, where λ is the electron-phonon coupling parameter. However, structural stability of the system puts bounds on T_c even in the strongly coupled regime due to the softening of phonons. In this case, T_c is also bounded by an averaged un-renormalized phonon frequency defined for a non-metallic precursor material. Additional features of this model will also be discussed.

1This work was supported by NSF Grant No. DMR04-39768 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy under Contract No. DE-AC03-76SF00098.