Abstract Submitted for the MAR06 Meeting of The American Physical Society

Bose-Einstein Condensation and atomic kinetic energies in liquid ³He-⁴He mixtures¹ SOULEYMANE DIALLO, University of Delaware, JONATHAN PEARCE, Institut Laue Langevin, RICHARD AZUAH, NIST Center for Neutron Research, HENRY GLYDE, University of Delaware — We present neutron scattering measurements of the momentum distribution of liquid ³He-⁴He mixtures. The experiments were performed at wavevectors Q, $26 \le Q \le 29$ Å⁻¹, on the MARI time-of-flight spectrometer at the ISIS pulsed spallation neutron source. Mixtures with ³He concentrations x between 0 and 20% were investigated both in the superfluid and normal phases. From the data, we extract, to new accuracy, the Bose-Einstein condensate fraction n_0 and the momentum distributions of ³He and ⁴He atoms. We find an increase in n_0 above the pure ⁴He value; from $7.25\pm0.75\%$ (x = 0%) to $11.2 \pm 1.85\%$ at x = 15%, in agreement with theoretical calculations but in disagreement with the only other measurement. The ⁴He kinetic energy, kef, is found to be largely independent of x. The ³He momentum distribution $n(\mathbf{k})$ is not well fitted with a Fermi step function alone. A high momentum tail in $n(\mathbf{k})$ is needed to get a good fit - a tail that is consistent with calculated tails in $n(\mathbf{k})$. The ³He atomic kinetic energy, K_3 , is determined almost entirely by this tail. It is therefore not a well determined single property for comparing theory and experiment. This finding resolves a long-standing discrepancy on K_3 between theory and experiment.

 $^1\mathrm{Work}$ supported by BES DOE, DE-FG02-03ER46038 and ISIS

Souleymane Diallo University Of Delaware

Date submitted: 06 Jan 2006

Electronic form version 1.4