Tunneling in Dilute Al-Mn Alloys: Observation of Resonant Scattering and Implications for High-Temperature Superconductors

STEVEN RUGGIERO, University of Notre Dame, GERALD ARNOLD, University of Notre Dame, JOSEPH BYCHOWSKI, University of Notre Dame, ANTHONY WILLIAMS, University of Notre Dame, NAN SUN, University of Notre Dame, ANNA CLARK, Ball Aerospace & Technologies Corp., NATHAN MILLER, National Institute of Standards and Technology, JOEL ULLOM, National Institute of Standards and Technology — We report on the observation of superconducting energy gap suppression by resonant scattering. Tunneling measurements of dilute Al-Mn alloys demonstrate the absence of density-of-states smearing that accompanies pair breaking and verify the detailed predictions of the Kaiser resonant scattering theory. These materials represent model systems for quasi-particle scattering and interference phenomena in the high-temperature superconductors.

S.T.R. acknowledges support from the Department of Energy through grant DEFG02-88ER45373 and the DARPA SpinS program. A. M. C., N. A. M., and J. N. U. acknowledge the support of the NASA APRA program and the NIST Office of Microelectronics Programs.