Abstract Submitted for the MAR06 Meeting of The American Physical Society

Supersolid ⁴He Likely Has Nearly Isotropic Superflow¹ WAYNE M. SASLOW, Texas A&M University, SHIVAKUMAR JOLAD, Penn State University — We extend previous calculations of the zero temperature superfluid fraction f_s (SFF) vs localization, from the fcc lattice to the experimentally realized (for solid ⁴He) hcp and bcc lattices. The superfluid velocity is assumed to be a one-body function, and dependent only on the local density, taken to be a sum over sites of gaussians of width σ . Localization is defined as σ/d , with d the nearest-neighbor distance. As expected, for fcc and bcc lattices the superfluid density tensor is proportional to the unit tensor. To numerical accuracy of three-places (but no more), the hcp superfluid density tensor is proportional to the unit tensor. This implies that a larger spread in data on f_s , if measured on pure crystals, is unlikely to be due to crystal orientation. In addition, to three decimal places (but no more) the curves of $f_s vs \sigma/d$ are the same for both the hcp and fcc cases. An expected value for the localization gives an f_s in reasonable agreement with experiment. The bcc lattice has a similar curve of $f_s vs \sigma/d$, but is generally smaller because the lattice is more dilute.

¹Supported in part by DOE Grant No. DE-FG03-96ER45598.

Wayne M. Saslow Texas A&M University

Date submitted: 03 Dec 2005

Electronic form version 1.4