Abstract Submitted for the MAR06 Meeting of The American Physical Society

Thermal Expansion measurements on single crystals of the superconductor MgB₂¹ JOHN J. NEUMEIER, R. BOLLINGER, C. A. M. DOS SANTOS, Montana State University, N. D. ZHIGADLO, JANUSZ KARPINSKI, Laboratory for Solid State Physics ETH Zürich — Thermal expansion measurements have been conducted along the a and c axes on single crystals of the superconductor MgB_2 . The samples are platelets with typical thicknesses of 0.1 mm. The a axis lies in the plane of the platelets, this axis is typically 0.5 mm long. The measurements were conducted using a capacitive thermal expansion cell constructed entirely of fused silica; it is capable of detecting 0.1 \mathring{A} changes in length. The results reveal that the linear thermal expansion $\Delta L/L = 21 \times 10^{-4}$ and 5.2×10^{-4} along the c and a axes, respectively, in the temperature range 5 K < T < 300 K. At the superconducting transition temperature T_c , jumps in the thermal expansion coefficient α are observed to be positive along both axes. Regions where $\alpha < 0$ are observed along both axes. The results are in general agreement with recently published data [1] on polycrystalline MgB₂. [1] J. J. Neumeier, T. Tomita, M. Debassai, J. S. Schilling, P. W. Barnes, D. G. Hinks, and J. D. Jorgensen, Phys. Rev. B. Rapid Commun. December 2005.

¹This material is based upon work supported by the NSF through grant DMR 0504769.

John Neumeier Montana State University

Date submitted: 30 Nov 2005

Electronic form version 1.4