Electron-stimulated desorption ion angular distribution (ES-DIAD) investigations of the rutile TiO$_2$(011)-(2x1) surface* SERGEY SOLOVEV, Rutgers State University, MATTHIAS BATZILL, ULRIKE DIEBOLD, Tulane University, THEODORE MADEY, Rutgers State University — A wide variety of potential applications have stimulated investigations of the atomic-scale properties of TiO$_2$ surfaces. In a combined experimental and theoretical study it was shown recently that the rutile TiO$_2$(011)-(2x1) reconstruction is distinct from other TiO$_2$ surfaces: a model was proposed based on onefold coordinated (titanyl) oxygen atoms, giving rise to double-bonded Ti=O species at the surface [T. J. Beck et al., PRL 93 (2004) 036104]. These species may play a significant role in the enhanced photocatalytic activity of TiO$_2$(011). The present work is an attempt to provide a direct experimental test of the model. The ES-DIAD method combined with LEED is used to determine the orientation of Ti-O bonds relative to the (2x1) surface. The ES-DIAD data for O$^+$ exhibit two beams along [100] azimuths, each tilted >20 degrees from the surface normal; the data provide supporting evidence for the proposed model. *supported in part by NSF

Sergey Solovev
Rutgers State University

Date submitted: 04 Jan 2006

Electronic form version 1.4