Enhanced Raman Scattering from Individual Semiconductor Nanocones and Nanowires\(^1\) LINYOU CAO, BAHRAM NABET, JONATHAN SPANIER, Drexel University, DREXEL UNIVERSITY TEAM — We report strong enhancement (~10\(^3\)) of the spontaneous Raman scattering from individual silicon nanowires and nanocones as compared with bulk Si. The observed enhancement is diameter (\(d\)), excitation-wavelength (\(\lambda_{\text{laser}}\)), and incident polarization state-dependent, and is explained in terms of a resonant behavior involving incident electromagnetic radiation and the structural dielectric cross-section. The variation of the Raman enhancement with \(d\), \(\lambda_{\text{laser}}\) and polarization is shown to be in good agreement with model calculations of scattering from an infinite dielectric cylinder.

\(^1\)Work supported by Commonwealth of PA, ARO and NSF.