Abstract Submitted for the MAR06 Meeting of The American Physical Society

Band offsets of $SrTiO_3$ thin films grown on Si^1 KRISTOPHER ANDERSEN, C. STEPHEN HELLBERG, Naval Research Laboratory — $SrTiO_3$ is a promising material to replace SiO_2 as the gate dielectric in metal-oxidesemiconductor field-effect transistors (MOS-FETs). The advantage of $SrTiO_3$ is its large dielectric constant: an order of magnitude greater than other promising oxides. However, the negligible conduction band offset found experimentally for heterostructures of $SrTiO_3$ (001) grown on Si (001) limits the usefulness of $SrTiO_3$ in devices because of leakage current. Here we present first-principles calculations on $Si/SrTiO_3$ heterostructures and investigate ways to modify the band offsets. Experimentally motivated structures are considered, and the effects of dopants and defects on the electronic structure are quantified.

¹This work was supported by DARPA QuIST (DAAD-19-01-1-0650).

Kristopher Andersen Naval Research Laboratory

Date submitted: 30 Nov 2005

Electronic form version 1.4