Lipid-Protein Nanotubes with Open or Closed Ends, Microtubules Bundles and Inverted Tubulin Nanotubes

URI RAVIV, DANIEL J. NEEDLEMAN, MIGUEL A. OJEDA-LOPEZ, YOU LI, HERB P. MILLER, LESLIE WILSON, CYRUS R. SAFINYA, University of California, Santa Barbara

We describe synchrotron x-ray diffraction, electron microscopy, and optical imaging data of the self-assembly of microtubules (MTs) with various cationic agents. We established the conditions under which cationic liposomes can coat MTs and form lipid-protein nanotubes (LPNs). The LPNs exhibit a rather remarkable architecture with the cylindrical lipid bilayer sandwiched between a MT and outer tubulin oligomers forming rings or spirals. By controlling the cationic lipid/tubulin stoichiometry it is possible to switch between two states of nanotubes with either open ends or closed ends with lipid caps, a process which forms the basis for controlled chemical and drug encapsulation and release (Raviv et al, PNAS, 2005). Multivalent (3+, 4+ and 5+) cations can form three dimensional MT bundles that in some cases become tubulin based inverted nanotubules. Divalent cations form two dimensional MT necklaces (Needleman et al, PNAS, 2004).

This work was supported by the NIH GM-59288, the NSF DMR 0503347 and CTS 0404444. SSRL, is supported by the U.S. DOE. U.R. received fellowships HFSP and EMBO.