Abstract Submitted for the MAR06 Meeting of The American Physical Society

Coherent optical photons from shock waves in polarizable crystals EVAN REED, Lawrence Livermore National Laboratory, MARIN SOLJACIC, Massachusetts Institute of Technology, RICHARD GEE, Lawrence Livermore National Laboratory, JOHN JOANNOPOULOS, Massachusetts Institute of Technology — We predict that coherent electromagnetic radiation can be generated in polarizable crystalline materials when subject to a shock wave or soliton-like propagating excitation. To our knowledge, this phenomenon represents a new source of coherent optical radiation source in the 1-100 THz frequency range that is distinct from lasers and free-electron lasers. The radiation is generated by the synchronized motion of large numbers of atoms when a shock wave propagates through a crystal. Analytical theory, finite-difference time-domain simulations of Maxwell's equations, and molecular dynamics simulations demonstrate coherence lengths on the order of mm (at 16 THz) and potentially greater.

Evan Reed

Date submitted: 30 Nov 2005

Electronic form version 1.4